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Abstract: For this inquiry we supplemented typical academic variables to evaluate the
degree to which several student affairs variables add value in a machine learning model
predicting first-year retention. Findings indicated that living on campus, being Greek, as well
as engaging in recreational sports all had positive contributions to predicting retention.
Higher education leaders should use this study to advocate for and enact the inclusion of
student affairs variables into predictive models of student success.
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During the pandemic, our institution developed an early alert system to identify students at
risk for dropping out of the institution in order to offer more targeted and timely support.
The system primarily utilized academic data, including mid-semester grades and utilization
of the learning management system. Working in a student affairs assessment office, we
were interested in whether adding student affairs variables would improve the power of
the early alert system. This study was conducted by student affairs assessment
professionals, involved permission from data custodians of several student affairs
departments, and included collaboration with analysts involved in our university’s early
alert program. It was pitched to student affairs leadership as a way to build the case for
including student affairs data in future models.

Machine Learning

Our institution’s early alert system utilized machine learning predictive models. Machine
learning is a type of artificial intelligence that uses a computer (machine) to improve
predictive capabilities (learning) without human programming at each iteration. Machine
learning uses algorithms - such as logistic regression - to analyze data, and the resulting
output is the model, used to make predictions. Our study involved a supervised machine
learning model, where algorithms are trained on a dataset where the actual outcome is
known, so we could then test the predictive capability of the resulting model.

The literature underscores the potential of machine learning for identifying at-risk students
through early warning systems, where insights drawn from institutional data enable
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institutions to take proactive measures to support vulnerable students (Hoffait & Schyns,
2017; Howard et al., 2018). Machine learning models are emerging as transformative tools
in this area due to their adaptability and ability to handle complex datasets. Unlike
traditional statistical models, which can be restricted by assumptions or limited tolerance
for incomplete data, machine learning models perform effectively even with missing
information and have been shown to enhance predictive accuracy for retention outcomes
(Alkhasawneh & Hargraves, 2014; Delen, 2011).

However, machine learning model accuracy is highly variable and context-dependent, with
few studies directly comparing the effectiveness of different predictive models in this
domain. Scholars such as Cardona et al. (2020) recommend combining various models to
identify which approaches yield the highest accuracy across institutional contexts.
Addressing specific challenges like the cold start problem, where limited data is available
on new students, has led to advancements in prediction techniques, with strategies
designed to extend model accuracy for students who lack historical data (Sweeney et al.,
2016).

Retention

The outcome we selected for this study was first-year retention, specifically a student’s
continuous enrollment from the first fall semester to the following fall. Using retention as an
outcome measure offers institutions the advantage of identifying and addressing potential
risks early, rather than waiting for graduation data, making it a foundational metric in
student success tracking (DesJardines et al., 2003). Many institutions have implemented
data-driven approaches to better understand student retention and predict potential
dropouts (Cui et al., 2019).

Traditional retention prediction models often include a range of variables spanning
academics, demographics, and socioeconomics. Studies consistently find that academic
metrics, such as freshman grades, are highly significant in predicting retention, with
pre-college variables like high school performance also playing a critical role (Cardona et
al., 2020; Delen, 2010; Raju & Schumacker, 2015). In addition to academic performance,
demographic and socioeconomic variables—such as age, gender, financial status, and
residency—are frequently included in models. However, their impact on retention is
inconsistent, with studies reporting mixed findings depending on institutional type or
discipline. For example, while demographics like race and gender are relevant predictors
in STEM fields, other studies find these variables to have minimal impact in different
academic settings (Alkhasawneh & Hargraves, 2014; McAleer & Szakas, 2010).

Financial and socioeconomic variables also hold predictive value, although, as some
studies indicate, results are inconsistent due to variances in how family socioeconomic
status is measured. For instance, Oztekin (2016) found monetary variables are less relevant
predictors of graduation rates. However, Marquez-Vera et al. (2016) identified ‘mother’s
level of education’ as a predictor for dropout rates among Mexican high school students,
which aligns with findings in the United States showing that family socio-economic status is
a strong correlate of academic performance (Sirin, 2005).
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Researchers have increasingly called for an expansion in the types of variables included in
retention prediction models, arguing that non-academic variables—such as emotional
well-being, family background, and cultural variables—play a significant role in students’
academic decisions (Delen, 2010; Slim et al., 2014). For example, Delen (2010) emphasizes
that student retention is often higher when students perceive their university environment
as aligned with their personal values and social interests. Others have since found that
social integration and engagement variables, such as living on campus, involvement in
campus organizations, or engaging in campus recreation, are influential predictors of
student persistence (Graham et al., 2021; Milton et al., 2020; Oztekin, 2016).

Methods

Data Sources and Measurement Plan

This study utilized multiple institutional data sources spanning three academic years
(2017–2020) of freshman data to predict retention into their second fall semester. Primary
data sources included the university's student information system for academic and
demographic data, as well as data from the systems of several student affairs units:
on/off-campus status from Housing, facility visits from Recreational Sports, greek affiliation
from Greek Life, and program engagement from the Career Center.

The measurement approach was developed by the authors, who were staff members
conducting this inquiry in their roles in an assessment office within a student affairs division
at a southeast university. Authors have various levels of experience in higher education,
from 1 to 20+ years. The authors also vary in their education level, ranging from masters to
doctoral degrees. The selection of variables was informed by previous retention studies
(Delen, 2010; Oztekin, 2016) and input from colleagues in student affairs at the same
institution regarding available data points that could indicate student engagement.

While machine learning models perform well with missing data, they benefit from a more
even distribution of data across outcomes (Abd Elrahman & Abraham, 2013). At this
institution, first-year retention is around 95%, leaving only around 5% in the non-retention
group. To decrease this difference, the data set used in this study focused on the 2,054
students with a cumulative first-year GPA of <=3.0. This cutoff was selected because <=2.0
would have been too small a sample, and <=3.0 is in alignment with the threshold to
maintain scholarships such as Florida Bright Futures (Florida Department of Education,
2024). With this group, retention was closer to 75%, as detailed in Table 1.

Table 1. Number of Students Retained by GPA

Cumulative GPA Retained Not Retained

GPA<=3.0 02,040 504

Any GPA 20,898 929
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Table 2 details a list of variables included in the analysis, noting those from student affairs.
A Greek Student is a student that was an active member of a university-approved fraternity
or sorority in their first year. Live on Campus is a student who lives in university-run
Housing. Recreational Sports visits in Spring or Fall is the total number of times a student
swipes into a Recreational Sports facility that semester. Career Center visits in Spring or
Fall is the total number of times a student uses a menu of Career Center services that
semester, including various 1:1 appointment types as well as workshops and larger events
such as career fairs.

Table 2. Variables Included in Analysis

Description Data Type

* Career Center visits in Fall Number

* Career Center visits in Spring Number

Carried Hours in Fall Number

Carried Hours in Spring Number

Classification Number

College Category

County Code Category

Ethnicity Category

First Generation Flag Binary nominal

Gender Binary nominal

* Greek Student Binary nominal

* Live on Campus Binary nominal

Major Category

Term Registered Hours in Fall Number

Transfer Hours Number

* Recreational Sports visits in Fall Number

* Recreational Sports visits in Spring Number

Residency Category

Second fall registered (Y/N) Binary nominal

Term GPA in Fall Number

Term GPA in Spring Number

* Variables from Student Affairs

174 | JSAIII



Implementation and Analysis Process

We used the Cross-Industry Standard Process for Data Mining (CRISP-DM), which provides
a systematic and structured way of conducting data mining studies, and hence increasing
the likelihood of obtaining accurate and reliable results (Delen, 2010). This method
contains six steps:

1. Understand the business needs and develop the goal for study
2. Identify, collect, and understand the relevant data for the study
3. Select attributes, clean, and transform the data for modeling
4. Use various modeling techniques to develop models
5. Evaluate and assess if the results of models are valid and meet the goal of study
6. Deploy the model and use the result in a decision-making process

Before applying the machine learning models, several preprocessing steps were
necessary to prepare the data. Categorical variables, such as student major, residency
status, and Greek life membership, were transformed using one-hot encoding, a technique
that converts categorical variables into a binary format suitable for machine learning
algorithms (Potdar et al., 2017). For example, the 'Greek Student' variable was converted
into two binary columns: 'Greek_Yes' and 'Greek_No', where each column would contain a
value of 1 or 0 for each student.

Numerical variables, including GPA and visit counts, were standardized using z-score
normalization to ensure all features were on the same scale. This transformation is
particularly important for the logistic regression and neural network algorithms, which are
sensitive to the scale of input features (Zhang et al., 2019). The standardization process
involved subtracting the mean and dividing by the standard deviation for each numerical
feature:

Z = (X - μ) / σ

During implementation, the primary challenge was data imbalance in the original dataset,
which led to our focus on students with ≤3.0 GPA and using K-fold cross-validation.

K-fold cross-validation was applied to minimize the bias and estimate model performances.
This procedure involves dividing the data into k groups of samples, which are called folds.
As k gets larger, the difference in size between the training set and the resampling subsets
gets smaller. As this difference decreases, the bias of the technique becomes smaller
(Kuhn & Johnson, 2013). In this study, we set k to 10. This meant the dataset was divided
into 10 folds, with nine folds used to train the model and one fold used to test the
predictive performance of the model.

The technical implementation utilized Python for data preprocessing and model
development, employing the Scikit-learn library for machine learning implementations,
Pandas for data manipulation, and NumPy for numerical computations. Data visualization
was accomplished using Matplotlib and Seaborn libraries.
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Classification Models

In this study, we used three supervised machine learning algorithms: Logistic regression,
random forest, and artificial neural network. Logistic regression, which can be considered a
machine learning as well as general data analysis technique, is powerful at solving
classification problems (Ray, 2019). It predicts the chances of a categorical outcome given
one or more ranked input variables. At the most basic level, logistic regression has a binary
outcome, such as whether a student is retained, but it can also extend to multi-class
outcomes (Delen, 2010; Karsmakers et al., 2007).

Random forest combines a set of decision trees, which are branching choices of how to
predict outcomes. The model is refined using bootstrapping, which involves picking
random samples to test against each other and average across the entire dataset (Gislason
et al., 2004). Accuracy is then verified against a final sample from the original dataset that
was not part of the bootstrapping.

An artificial neural network mimics the functionality between neurons in the human brain
(Zhang et al., 2019). Its basic structure is formed from the input layer, hidden layer, output
layer, each of which consists of at least one unit (neuron). Units in the hidden layer receive
data from the input unit, adjust the weight through connection and function, and then pass
the data to the output layer. (Krose & Smagt, 2011). These hidden layers between input and
output use this processing to predict nonlinear relationships (Dreiseitl & Ohno-Mchado,
2003; Lek et al., 1996).

Model Evaluation and Validation

The performance of each model was assessed using metrics organized into what is called
a confusion matrix, which is a table containing the counts of predicted and actual values.
The rows represent the actual categories, and the columns represent the predicted
categories. The subsequent four metrics are defined as follows:

● True positive (TP): number of students correctly predicted as not retained
● False positive (FP): number of records incorrectly predicted as not retained
● False negative (FN): number of records incorrectly predicted as retained
● True negative (TN): number of records correctly predicted as retained

These metrics are in turn combined in the following equations to calculate accuracy,
sensitivity, and specificity:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
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In this study, sensitivity is the ability of the model to predict which students will drop out,
and specificity is the ability of the model to predict which students will come back.
Accuracy is the percentage of students correctly classified out of all students in the model.

Sensitivity and specificity are inversely related. As a model is adjusted to increase its ability
to predict true positives, this comes with more false positives, so its ability to predict true
negatives decreases. This relationship between sensitivity and specificity is often
visualized in a graph summarizing all possible adjustments to the model, as shown in
Figure 1. This is called the Receiver Operating Characteristics Curve (ROC Curve). The
y-axis is the true positive rate, while the x-axis is the false positive rate. A model with no
predictive power would yield a 50% split, which is represented by a dotted line across the
graph. The solid line contains a point for the performance of each model's variation in
threshold between sensitivity and specificity. The higher this line is above the 50% default,
the better that model's performance.

Area under the ROC curve, often abbreviated as AUC, is the two-dimensional space under
the ROC curve. This serves as an aggregate measure of performance across all thresholds
of a model. A perfect model would have an area of 1, meaning that all cases are correctly
identified as positives or negatives (Hosmer et al., 2013). Once a model is trained and
identified as meeting an acceptable AUC, permutation feature importance is calculated to
examine how important each input variable is to the model. Feature importance is
calculated by quantifying the decrease in accuracy after randomly shuffling the value of a
single feature.

Figure 1. Example ROC Plot with Area Under the Curve.
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Results

Model Performance

The aim of this study was to supplement academic predictors to evaluate the degree to
which several student affairs variables add value to classification models predicting
student retention. Across all three models tested, the inclusion of student affairs data
demonstrated improved predictive capability (Table 3). The random forest model achieved
the highest AUC value (0.910), while the neural network showed the highest accuracy
(88%) and specificity (0.904). Both logistic regression and random forest models
demonstrated equal sensitivity (0.822). Notably, all three models resulted in AUC values
above 0.9, indicating an outstanding level of discrimination between positive and negative
instances (Hosmer & Lemeshow, 2000).

Table 3. Model Results

Measure Random Forest Logistic Regression Neural Network

Models Including SA Variables

Accuracy 83% 85% 88%

Sensitivity 0.822 0.822 0.772

Specificity 0.838 0.858 0.904

AUC 0.910 0.900 0.903

Models Not Including SA Variables

Accuracy 81% 85% 84%

Sensitivity 0.891 0.832 0.822

Specificity 0.784 0.865 0.840

AUC 0.889 0.899 0.897

When comparing classification models with and without student affairs data, the models
incorporating student affairs variables consistently showed higher accuracy and AUC
scores. The logistic regression and neural network models specifically demonstrated
improved specificity scores with the inclusion of student affairs data. While sensitivity
scores were generally lower in the student affairs group, the random forest model proved
an exception, showing enhanced sensitivity with the inclusion of these variables. These
results suggest that student affairs data can contribute meaningfully to the overall
performance of retention prediction models.

Feature Importance and Variable Relationships

Analysis of feature importance scores across the three models revealed that while
traditional academic metrics maintained high importance (Spring term GPA, Spring Total
Carried Hours, Fall term GPA), several student affairs variables emerged as significant
predictors. Specifically, Recreational Sports visits in Spring, Live on Campus status, and
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Greek Student affiliation appeared consistently among the top 10 features across models
as noted in Table 4.

Table 4. Top 10 Model Features Importance Score by Model

Model Feature Importance Score

Logistic Regression

Spring term GPA 0.032711

Spring Total Carried Hours 0.009823

Fall term GPA 0.008350

Spring Total Earned Hours 0.007073

College 0.004028

* Recreational Sports visits in Spring 0.003733

Residency 0.003536

* Live on Campus 0.003340

Term Registered Hours in Fall 0.003143

First Generation Flag 0.002554

Artificial Neural Network

Fall term GPA 0.079699

* Greek Student 0.003798

Fall term GPA 0.002554

Spring Total Earned Hours 0.001768

* Live on Campus 0.001637

First Generation Flag 0.001375

Term Registered Hours in Fall 0.001244

Gender 0.001244

Fall Carried Hours 0.001179

Major 0.000917

Random Forest

Spring term GPA 0.045187

Spring Total Carried Hours 0.011788

* Recreational Sports visits in Spring 0.007859

Fall Carried Hours 0.006483

* Recreational Sports visits in Fall 0.006418

College 0.006221

Fall term GPA 0.005697

Transfer Hours 0.004650

* Greek Student 0.003733

Ethnicity 0.002620

* Variables from Student Affairs.
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The addition of student affairs data influenced importance scores differently across
models: in the logistic regression model, Live on Campus and Recreational Sports visits in
Spring ranked among the top ten important variables; the random forest model ranked
Greek Student status as the third most important predictor; and the neural network model
identified Recreational Sports visits in Spring and Greek Student status as key student
affairs predictors.

To understand the directional relationship between student affairs variables and retention,
follow-up correlation analyses were conducted in Python. As noted in Table 5, all student
affairs variables showed significant (n = 2,054, p < .0001) positive associations with
retention, with Recreational Sports visits showing the strongest correlation (Spring:
r = 0.333, Fall: r = 0.304), followed by Living on Campus (r = 0.204) and Greek participation
(r = 0.133). These findings have implications for both immediate practice and future inquiry,
suggesting the value of incorporating broader student affairs metrics into retention
prediction models while highlighting opportunities for improved data collection and
integration across student affairs units.

Table 5. Follow-up Correlations

Variable Phi Coefficient Probability

Recreational Sports visits in Spring 0.3330 <.0001

Recreational Sports visits in Fall 0.3038 <.0001

Live on Campus in Fall 0.2042 <.0001

Greek 0.1330 <.0001

Stakeholder Engagement and Implementation

The collaboration with each contributing department helped advance several initiatives:
departments have agreed to expand the development of more proactive assessment plans
than they have in the past; division leadership has committed to collecting more unique
student participation data; once this data is collected, we have also gained buy-in to
integrate disparate data platforms into a unified database; and we have more support to
standardized metrics for division-wide assessment and storytelling. This study is also
helping us pursue an expanded university early alert system that includes student affairs
variables.

Recommendations

Results from this study support the value of several student affairs variables when included
in models of predicting student retention. Recreational Sports Visits, Living on Campus,
and being Greek had positive contributions to predicting retention. These findings confirm
other studies reporting the importance of social interaction variables when analyzing
retention (Delen, 2010; Oztekin, 2016; Slim et al., 2014).

Results also answered the call from several studies to merge several machine learning
models when developing predictions of student success (Cardona et al., 2020; Sweeney et
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al., 2016). Future use of machine learning for student success, in inquiry and application,
should benefit from similar merging of multiple models.

There are several limitations to acknowledge in this study. The dataset used is from only a
single institution and from a single three-year period that happened to lead into a
pandemic. In addition to variables that may differ across institutions and years, there is a
high retention rate at this institution restricting the amount of data on non-retained
students. The methods of this study should therefore be replicated at other institutions
with varied retention rates to assess whether the results are generalizable. If exploring
replication at other institutions, consider engaging institutional research, information
technology, faculty, and other campus partners with expertise in machine learning models.

This study also only uses a subset of student affairs variables that happened to be
available. There are a variety of other student affairs variables worth considering for
student success models, such as student activities, student organizations, leadership
programs, other health programs, and disability resource center services. Future inquiry
should continue and expand the incorporation of such student affairs variables as potential
contributors to predicting student success. There is also opportunity to apply theoretical
frameworks in exploration of which student affairs variables might impact retention as well
as understanding the mechanisms of these impacts.

Another limitation is that we only focused on first-year retention as the output of the
predictive model. There are other commonly used measures of student success, each with
varied gaps between prediction and outcome. For example, term or even course GPA are
finalized all within a single semester. On the other end of the spectrum, the graduation rate
takes 4-6 years to be realized. The contributions of student affairs to predicting such
disparate outcomes requires additional inquiry.

Conclusion

Student affairs units and leadership can use results from this study to advocate for
including their data in university efforts to predict and identify targeted support for student
success. Furthermore, since most included student affairs data points had a positive
association with retention, results also evidence the contribution of student affairs to not
just predictive models, but also to the goal of student success. While historical and
demographic variables cannot be changed by the time students attend higher education,
the student affairs variables in this study—which change as students pursue higher
education—offer an important opportunity to support the success of even more students.
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