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ABSTRACT. The vibrational modes contributing most significantly to the radiated sound of hand-bells, are
the bending waves travelling along the bell surface with periodic boundary conditions in the angular direction,
nearly clamped boundaries near the crown, and free boundary conditions at the mouth of the bell. They are
usually identified by two indices (m,n), where m counts the number of nodal lines crossing the crown, and n
the number of circumferential nodal lines. The (m,0) modes, for values of m higher than a critical value, are
missing. They are replaced by a mode for which the first circumferential nodal line lies very close to the mouth
of the bell. These modes are designated as (m,1#) modes. Using Finite Element Analysis (FEA) a hand-bell is
modeled with increasing complexity to show that both positive and negative curvatures are required in the bell
wall to account for the presence of the (m,1#) modes.
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INTRODUCTION

The partial differential equation in space
and time associated with a local disturbance in
an infinite medium, generally is a wave
equation with solutions representing traveling
waves. Imposing boundary conditions usually
limits the possible solutions to a discrete set of
standing waves identified with normal modes
of vibration. The shape of a hand-bell natu-
rally forms a free boundary at the mouth of
the bell, whereas the crown essentially clamps
the bell wall, imposing a condition of no
translational or rotational motion at the top of
the bell.

Experimental studies on hand-bells by T. D.
Rossing, R. Perrin, H. J. Sathoff, and R. W.
Peterson1 include holographic interference pat-
terns shown in figure 1.

Systematic grouping of those images by T. D.
Rossing and R. Perrin2 gives a periodic table-
like representation shown in figure 2.

Figure 31 shows a systematic relationship
between the frequency and the first mode index
m, identifying the number of nodal lines
crossing the crown, on logarithmic scales.

From all of these illustrations it becomes
apparent that the (m,1#) modes naturally fall

into the sequence of (m,0) modes. This paper
uses FEA modeling to investigate which bell
characteristics are responsible for the transition
from (m,0) to (m,1#) modes. FEA solutions
also include torsional and extensive modes,
which will not be considered in this paper. This
paper is limited to the study of transverse
bending waves.

As a starting point, reference is made to the
solution of a one dimensional wave equation
for an elastic string under tension, where
hinged boundary conditions at the ends limit
the solutions to standing waves in the form of
integral numbers of loops. Weinreich3 shows,
that relaxing the hinged condition at one
end to make it either more spring-like or
more mass-like, results in either an open end,
or a fish-tail-like configuration respectively
(figure 4).

It is not entirely unreasonable to expect a
two dimensional extension of that model for a
clamped top with hinged boundaries at the side
and a free bottom, to result in an effective
relaxing of the boundary, yielding an (m,1#)
mode. This suggests that for sufficiently narrow
plates, a strictly free boundary is not compat-
ible with the hinged boundary on the sides,
resulting in a fish-tail-like configuration at the
open end in the two dimensional extension of
the Weinreich one-dimensional model, corre-
sponding to the (m,1#) modes for a sufficiently
narrow mode section.
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Figure 2.—Systematic grouping of modes of vibration in a hand-bell (from Rossing & Perrin2).

Figure 1.—Vibrational modes of a hand-bell imaged with holographic interferometry (from Rossing,
Perrin, Sathoff & Peterson1).
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METHOD

In order to investigate the origin of the (m,1#)
modes, models of increasingly complex geome-
try were studied using Finite Element Analysis
(FEA). FEA requires the introduction of
geometric and structural parameters including
boundary conditions. The former involves
imposing a finite number of grid points on the
shape of the structure, and the latter requires
specifying mechanical and elastic parameters.
Values representative of Bronze alloys used for
hand-bells were chosen from standard tables.
Limits on translational and rotational freedoms
for certain parts of the structure are imposed as
boundary conditions. For the crudest approxi-
mation in the (m,0) mode, a wall section between
nodal lines is approximated as a flat rectangular
plate of constant wall thickness. The boundary
conditions imposed are: clamped at the top,
hinged at the sides, and free at the bottom.
(figure 5a)

ANSYSR-EDTM 4 an FEA program, com-
mercially available at treasonable cost to
students and faculty of educational institutions,
provides a large enough number of degrees of
freedom to accommodate all increasingly
complex approaches to the normal mode
hand-bell problem considered in this work.
Figure 5a shows the geometry and the mesh
chosen for the lowest order of approximation.
Figures 5b-d show modes for increasing values
of m at increasing frequencies. Clearly the
approximation is too crude to illustrate the
appearance of the (m,1#) mode. An additional
check is made by reducing the plate width.
Figures 6a–c again show the inadequacy of the
flat rectangular plate model, (m,1#) modes do
not appear.

The next approximation takes the rectangle
to a trapezoid, reflecting the realization that
the circumference of the bell at the mouth
is larger than at the crown. Figures 7a–b
clearly illustrate that this approximation is
still inadequate.

In the next approximation the flat plate is
replaced by a curved section of the bell, and
again the inadequacy of the model is evidenced
in figures 8.

A crown is added for the fourth level of
approximation, with the clamped boundary
condition imposed near the center of the crown.
This modification is still inadequate as shown by
figures 9.

Figure 3.—Relationship of frequency and first
mod index of a C5 Hand-bell (from Rossing, Perrin,
Sathoff & Peterson1).

Figure 4.—Relaxing boundary conditions at one
end of a vibrating string under tension (from
Weinreich3).
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For the fifth approximation, an additional
curvature, opposite to the curvature added in
the third approximation, is introduced.

This approximates the actual bell cross-
section more closely. Now the (m,1#) mode
appears (fig 10). Imposing a hinged boundary
condition at the location of expected nodal
lines is difficult for this double curvature
configuration, consequently the entire bell is

modeled with a fixed thickness contour, and the
clamped boundary condition is imposed on the
center hole of the crown. Mode (2,1) is shown
in fig 11 in gray scale representation. For this
configuration modes (2,0), (2,1), (3,1), (4,1) and
(3,1#) are shown in figures 12, 13, 14, 15, and
16 respectively. These figures show the extreme
displacements of the modes as viewed from the
top of the bell.

Figure 5.—A. Flat plate with FEA grid and boundary conditions. c—clamped, h—hinged, f—free. B.
Mode (0,0). C. Mode (1,0). D. Mode (4,0).
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Figure 7.—Flat trapezoidal plate. A. Mode (0,0). B. Mode (3,0).

Figure 6.—A. Narrow rectangular plate, same boundary conditions as Figure 5. B. Mode (0,0). C.
Mode (1,0).
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Figure 10.—Bell section with double curvature.
Mode (5,1).

Figure 8.—Conical plate section. Mode (4,0).

Figure 9.—Conical plate section with crown.
Mode (5,0). Figure 11.—Bell model. Mode (2,1).
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Figure 13.—Two FEA frames of opposite extreme displacement for the (2,1) mode. The nodal line lies
approximately between the third and the fourth circumferential grid line.

Figure 14.—Two FEA frames of opposite extreme displacement for the (3,1) mode. The nodal line lies
approximately between the fourth and the fifth circumferential grid line.

Figure 12.—Two FEA frames of opposite extreme displacement for the (2,0) mode.
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CONCLUSION

From this FEA study of hand-bell models of
increasing complexity it appears that the
saddle-like double curvature in the side wall
of the bell is essential for the formation of the
(m,1#) modes. Frequency comparisons with an
actual bell are not possible since the cross-
section of a real bell would require a full three
dimensional FEA model for which the number
of degrees of freedom exceed the capability of
this program. That study is left for future work
with access to a full ANSYS FEA program.
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Figure 16.—Two FEA frames of opposite extreme displacement for the (3,1) mode. The nodal line is
located between the rim and the first circumferential grid line.

Figure 15.—Two FEA frames of opposite extreme displacement for the (4,1) mode. The nodal line lies
approximately between the fourth and the fifth circumferential grid line.
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